
CS106A
Winter 2012-2013

Handout #29
March 4, 2013

Practice Second Midterm Exam #1

 Based on a handout by Eric Roberts and Mehran Sahami

This handout is intended to give you practice solving problems that are comparable in format and
difficulty to those which will appear on the second midterm final exam.

Second Midterm Exam is Open Book, Open Notes, Closed Computer

The examination is open-book (specifically the course textbook The Art and Science of Java) and you
may make use of any handouts, course notes/slides, printouts of your programs or other notes you've
taken in the class. You may not, however, use a computer of any kind (i.e., you cannot use laptops on
the exam).

Coverage

The second midterm exam covers the material presented throughout the class (with the exception of the
Karel material), which means that you are responsible for Chapters 1 through 13 of the class textbook
The Art and Science of Java. You are also responsible for the material presented in the lecture on
graphs and collections.

General instructions

Answer each of the questions included in the exam. Write all of your answers directly on the
examination paper, including any work that you wish to be considered for partial credit.

Each question is marked with the number of points assigned to that problem. The total number of
points is 120. In all questions, you may include methods or definitions that have been developed in the
course, either by writing the import line for the appropriate package or by giving the name of the
method and the handout or textbook chapter number in which that definition appears.

Unless otherwise indicated as part of the instructions for a specific problem, comments will not be
required on the exam. Uncommented code that gets the job done will be sufficient for full credit on the
problem. On the other hand, comments may help you to get partial credit if they help us determine
what you were trying to do.

Blank pages for solutions omitted in practice exam (but will be available on real exam)

In an effort to save trees, the blank pages that would be provided in a regular exam for writing your
solutions have been omitted from this practice exam.

- 1 -

Problem 1: Short answer (10 points)

1a. We learned that when you pass an object as a parameter into a method, changes that are made to
the object persist after the method completes execution. However, if you pass in an int as a
parameter and change the value of that parameter in a method, the original int variable that was
passed in remains unchanged. Explain why that is.

Answer for 1a:

1b. Suppose that the integer array list has been declared and initialized as follows:

private int[] list = { 10, 20, 30, 40, 50 };

This statement sets up an array of five elements with the initial values shown below:

 list

10 20 30 40 50

Given this array, what is the effect of calling the method

mystery(list);

if mystery is defined as:

public void mystery(int[] array) {
int tmp = array[array.length - 1];
for (int i = 1; i < array.length; i++) {

array[i] = array[i - 1];
}
array[0] = tmp;

}

Work through the method carefully and indicate your answer by filling in the boxes below to
show the final contents of list:

Answer to 1b:

 list

- 2 -

Problem 2: Graphics and Interactivity (20 points)

Write a GraphicsProgram that does the following:

1. Add buttons to the South region labeled "North", "South", "East", and "West".

2. Create an X-shaped cross 10 pixels wide and 10 pixels high.

3. Adds the cross so that its center is at the center of the graphics canvas. Once you have completed
these steps, the display should look like this:

4. Implement the actions for the button so that clicking on any of these buttons moves the cross 20
pixels in the specified direction. At the same time, your code should add a red GLine that connects
the old and new locations of the pen.

Keep in mind that each button click adds a new GLine that starts where the previous one left off. The
result is therefore a line that charts the path of the cross as it moves in response to the buttons. For
example, if you clicked East, North, West, North, and East in that order, the screen would show a
Stanford “S” like this (note the "S" would be red, even though it does not appear so in the black and
white handout):

- 3 -

Problem 3: Files and Strings (20 points)

T E S T

B E S T

B E E T

B E E S

B Y E S

E Y E S

E V E S

E V E R

O V E R

Word Ladder

A word-ladder puzzle is one in which you try to connect two given words using a sequence of English
words such that each word differs from the previous word in the list only in one letter position. For
example, the figure at the right shows a word ladder that turns the word TEST into the word OVER using
eight single-letter steps.

In this problem, your job is to write a program that checks the correctness of a word ladder entered by
the user. Your program should read in a sequence of words and make sure that each word in the
sequence follows the rules for word ladders, which means that each line entered by the user must

1. Be a legitimate English word

2. Have the same number of characters as the preceding word

3. Differ from its predecessor in exactly one character position

Implementing the first condition requires that you have some sort of dictionary available, which is
beyond the scope of this problem. You may therefore assume the existence of a Lexicon class
(generally speaking, a lexicon is simply a list of words) that exports the following method:

public boolean isEnglishWord(String str)

which takes a word (String) and returns true if that word is in the lexicon (i.e., the string passed is a
valid English word). You may also assume that you have access to such a dictionary via the following
instance variable declaration:

private Lexicon lexicon = new Lexicon("english.dat");

All words in the lexicon are in upper case.

If the user enters a word that is not legal in the word ladder, your program should print out a message
to that effect and let the user enter another word. It should stop reading words when the user enters a
blank line. Thus, your program should be able to duplicate the following sample run that appears on
the next page (the italicized messages don’t appear but are there to explain what’s happening).

- 4 -

- 5 -

The first entry must be a legal English word

You can't change all the letters at once

Each entry must be the same length

All entries must be English words

Blank line denotes the end

Problem 4: Arrays (25 points)

A magic square is an n × n grid of numbers with the following properties:

1. Each of the numbers 1, 2, 3, …, n2 appears exactly once, and

2. The sum of each row and column is the same.

For example, here is a 3 × 3 magic square, which uses the numbers between 1 and 32 = 9:

4 9 2

3 5 7

8 1 6

and here is a 5 × 5 magic square, which uses the numbers between 1 and 52 = 25:

11 18 25 2 9

10 12 19 21 3

4 6 13 20 22

23 5 7 14 16

17 24 1 8 15

Write a method

private boolean isMagicSquare(int[][] square, int n);

that accepts as input a two-dimensional array of integers (which you can assume is of size n × n) and
returns whether or not it is a magic square.

- 6 -

Problem 5: Java programming (25 points)

Q: What do you call Enron corporate officers who contributed money to Senators on
both the left and the right?

A: Ambidextrous scallywags.

—Steve Bliss, posting to the Googlewhacking home page

The GoogleTM search engine (which was developed here at Stanford by Larry Page and Sergey Brin)
has rapidly become the search engine of choice for most users of the World Wide Web. A few years
ago, it also gave rise to a pastime called Googlewhacking that quickly became quite popular among
web surfers with far too much time on their hands. The goal of the game is to find a pair of English
words so that both appear on exactly one Web page in Google’s vast storehouse containing billions of
pages. For example, before they were listed on the Googlewhacking home page, there was only one
web page that contained both the word ambidextrous and the word scallywags.

Suppose that you have been given a method

public String[] googleSearch(String word)

that takes a single word and returns an array of strings containing the URLs of all the pages on which
that word appears. For example, if you call

googleSearch("scallywags")

you would get back a string array that looks something like this:

http://www.scallywags.ca/

http://www.effect.net.au/scallywags/

http://www.scallywags1.freeserve.co.uk/

http://www.scallywagsbaby.com/

http://www.sfsf.com.au/ScallywagsCoaches/

http://www.theatlantic.com/unbound/wordgame/wg906.htm

http://www.maisemoregardens.co.uk/emsworth.htm

Each of the strings in this array is the URL for a page that contains the string scallywags. If you were
to call

googleSearch("ambidextrous")

you would get a different array with the URLs for all the pages containing ambidextrous.

Your job in this problem is to write a method

public boolean isGooglewhack(String w1, String w2)

that returns true if there is exactly one web page containing both w1 and w2. It should return false in
all other cases, which could either mean that the two words never occur together or that they occur
together on more than one page. Remember that you have the googleSearch method available and
therefore do not need to write the code that actually scans the World Wide Web (thankfully!).

- 7 -

Problem 6: Using data structures (20 points)

This quarter you have also gotten experience with the HashMap class in Java. When working with
HashMap s, sometimes cases arise where we wish to determine if two HashMap s have any key/value
pairs in common. For example, we might have the following two HashMap (named hashmap1 and
hashmap2) that map from Strings to Strings (that is, they are HashMap<String,String>s) and we
want to count how many key/value pairs they have in common.

hashmap1 hashmap2

Key Value Key Value

Alice Healthy Mary Ecstatic

Mary Ecstatic Felix Healthy

Bob Happy Ricardo Superb

Chuck Fine Tam Fine

Felix Sick Bob Happy

In the example above, these two HashMap s have two key/value pairs in common, namely:
"Mary"/"Ecstatic" and "Bob"/"Happy". Note that although the key "Felix" is in both HashMaps, the
associated value with this key is different in the two maps (hence this does not count as a key/value
pair that is common to both HashMap s). Similarly, just having the same value without the same key
(such as the value "Fine" which is mapped to by different keys in the two different HashMaps) would
also not count as a common key/value pair between the two HashMap s.

Your job is to write a method:

public int commonKeyValuePairs(HashMap<String,String> map1,
 HashMap<String,String> map2)

that is passed two objects of type HashMap<String,String> and returns the number of common
key/value pairs between the two HashMaps.

- 8 -

